Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(9): 2841-2855, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611630

RESUMO

Plants developing into the flowering stage undergo major physiological changes. Because flowers are reproductive tissues and resource sinks, strategies to defend them may differ from those for leaves. Thus, this study investigates the defences of flowering plants by assessing processes that sustain resistance (constitutive and induced) and tolerance to attack. We exposed the annual plant Brassica nigra to three distinct floral attackers (caterpillar, aphid and bacterial pathogen) and measured whole-plant responses at 4, 8 and 12 days after the attack. We simultaneously analysed profiles of primary and secondary metabolites in leaves and inflorescences and measured dry biomass of roots, leaves and inflorescences as proxies of resource allocation and regrowth. Regardless of treatments, inflorescences contained 1.2 to 4 times higher concentrations of primary metabolites than leaves, and up to 7 times higher concentrations of glucosinolates, which highlights the plant's high investment of resources into inflorescences. No induction of glucosinolates was detected in inflorescences, but the attack transiently affected the total concentration of soluble sugars in both leaves and inflorescences. We conclude that B. nigra evolved high constitutive rather than inducible resistance to protect their flowers; plants additionally compensated for damage by attackers via the regrowth of reproductive parts. This strategy may be typical of annual plants.


Assuntos
Flores , Glucosinolatos , Flores/metabolismo , Glucosinolatos/metabolismo , Inflorescência , Mostardeira/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo
2.
Microbiol Spectr ; 9(1): e0040421, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378969

RESUMO

Legionella pneumophila, the causative agent of Legionnaires' disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.


Assuntos
Antibacterianos/farmacologia , Legionella pneumophila/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Humanos , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/terapia , Pseudomonas fluorescens/genética , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...